AutoCut Image Segmentation

Evan Rosen and Nikil Viswanathan
Computer Science Department
Stanford University

{emrosen,nikil}@stanford.edu

Abstract

Image segmentation with minimal user input is still a
challenging task with many practical implications. The
popular GrabCut [4] algorithm approaches this task from
an iterative optimization perspective using image color and
contrast information to develop a system that only requires
a user to draw a bounding box around the foreground. Our
approach extends the state of the art GrabCut system by in-
specting the image to discover the optimal number of color
clusters, creating a local contrast map instead of using a
global constant, and automatically learning the size of the
foreground bounding box. While eliminating the need for
user input and minimizing the amount of parameter tuning,
we are still able to maintain competitive performance. Our
system creates state of the art segmentations for fairly diffi-
cult images completely on its own.

1. Introduction

We approach the image segmentation challenge through
an energy minimization method with graph cuts [2]. Build-
ing off of the GrabCut technique, we extend the algorithm
with an automatic selection of the number of components in
the Gaussian mixture model, a local contrast model, and au-
tomatic foreground boxing. Our goals were to minimize the
amount of parameter tuning and user interaction required.
We were pleased to find that our implementation achieved
the state of the art results over a wide array of images.

2. Segmentation

The problem of image segmentation in computer vi-
sion is much like the task of automatic parsing in natural
language processing: it provides the fundamental building
blocks with which we may approach a variety of higher
level visual questions such as scene classification, object
recognition or depth reconstruction. While there is no sin-
gle definition of what constitutes a correct segmentation, we
generally expect a good segmentation to divide an image

along region and object boundaries. In their normalized
cuts paper [6], Shi and Malik tackle image segmentation
through a graph partitioning approach. Normalized cuts ac-
count for the tendency of minimum cut to choose a single
vertex on one side by scaling the value of the cut by the
inverse of the total weight in each cut. This graph cut is
computed through optimization by formulation as a gener-
alized eigenvalue problem. Arbalez et al. [1] augment the
global normalized cuts method with a local contour detec-
tor. A local contour model, incorporating brightness, color,
and texture boundary cues serve as the edges weights used
for the normalized cuts algorithm. Russel et al. [5] take yet
another approach by incorporating semantic level informa-
tion about feature co-occurence from large unlabeled cor-
pora. By adapting topic models such as pLSA and LDA
from the text analysis community, they are able to identify
good segmentations by the fact they they consist of coher-
ent groupings of features, or topics which have been previ-
ously observed with great regularity across the corpus. Un-
like some of the methods above, Graph Cuts [2] makes the
simplifying assumption that an image can only consist fore-
ground and background segments. This is geared towards
interactive segmentation in which a user often just wants
to separate an object from the background. The graph cut
method casts the segmentation problem is cast as a maxi-
mum a posteriori (MAP) estimation problem for a Markov
random field (MRF). The MRF is built from a grid of seg-
mentation indicator variables for each pixel in the image,
denoted as «;;. Then for each such indicator variable, a
unary potential is defined which encodes the compatibility
of a given segmentation assignment with the appearance in-
formation (grayscale intensity). A set of pairwise potentials
are also defined over each pair of neighboring pixels, which
enforce how strongly the pixels prefer to be segmented to
the same region rather than separated by a segmentation
boundary. The unary potentials, or appearance models, are
learned on a per image basis by asking the user to brush
pixels from the foreground and background. Given these
pixels, a histogram over intensity values is learned for each
region. The unary energy for a particular segmentation as-

signment of a pixel is then the probability associated with
the histogram bin into which it falls. The pairwise potentials
on the other hand are just the between-pixel intensity differ-
ences, normalized by the amount of contrast within a given
image. Given these potentials, the optimal segmentation is
then defined as MAP assignment to the « variables, which
can be solved using an efficient min-cut/max-fliw algorithm
proposed in a previous paper [3].

3. Algorithm

The GrabCut algorithm introduced in [4] extends the
graph cut technique proposed in [2] through an iterative
energy minimization process. GrabCut still uses the MRF
formulation of the segmentation problem and employs the
min-cut/max-flow algorithm of [2]. The main difference
lies in the user interface, which only requires a single
bounding box around the foreground region. Because this
reduces the quality of the initial pixel labels used to learn the
unary potentials, they introduce an iterative method which
still yields final segmentations comparable to the original
graph cut results of [2]. Another important difference be-
tween the GrabCut algorithm and [2] is that it uses color
information rather than grayscale intensity. Thus, the unary
potentials must to model distributions within colorspace. To
adjust to this higher dimension, [4] use two Gaussian mix-
ture models in the place of the histograms which avoids the
exponential increase in the number of histogram bins and
the associated problems of over-fitting. The switch from
histograms to a mixture models also requires a slight adjust-
ment to the unary potentials. In GrabCut, the unary energy
of a segmentation assignment is the maximum probability
under any of the Gaussian mixture components. The itera-
tive component of GrabCut is key because unlike the precise
brushing in [2] the bounding box will incorrectly label some
background pixels as foreground. To overcome this prob-
lem, [4] repeatedly updates the unary potentials and then the
segmentation, at each iteration, re-learning the appearance
models from the current segmentation. Once this process
converges to a stable segmentation, the user is presented
with the option to manually ”brush” the image and specify
regions the algorithm misclassified. The incorrect pixel as-
signments are then enforced to be hard labelling constraints
in the segmentation step

4. Our Implementation
4.1. Appearance Models

For our appearance model we used the RGB Gaussian
mixture model (GMM) as described in [4]. That is, we
created two k—mixtures of multivariate Gaussians in RGB-
space: one for the foreground region and one for the back-
ground region. In addition to the actual Gaussian param-
eters (X and p) there is also a mixture weight associated

with each component of each model, 7, ;. Intuitively each
Gaussian corresponds to some object or region which re-
sides in either the foreground or background. We initial-
ize the parameters for each Gaussian component by running
k—means on the color vectors for each pixel and then esti-
mating each component from the pixels assigned to the k"
cluster. At each stage of the iterative algorithm, we then re-
estimate these parameters according to the current assign-
ment of pixels to regions. For each pixel z,, assigned to
region «,,, we assign it to the mixture component & which
minimizes the score

D(Zna A, k) = —log o,k — Ing(Zn|Ean,ka NZn,k)

Then, given these new assignments of pixels to mixture
components, we learn a new multivariate Gaussian using a
standard ML estimation and set the new 7, ; to be the pro-
portion of pixels in region o which are assigned to the k"
component. It is worth noting that these mixture weights
play an important role at segmentation time because both
the foreground and background GMMs will likely contain
components which describe the same colors. This can hap-
pen due to the fact that the foreground bounding box of-
ten includes some of the background. Though each GMM
may learn similar components for those colors, the mixture
weights can help push ambiguous pixels to the correct seg-
mentation by recognizing that those colors show up signifi-
cantly more often in a particular region. We found that the
quality of our results depended heavily upon the number of
components, k, in each GMM. In simple images such as
“bananal”, for example, the use of too many mixture com-
ponents led to mistakenly treating the portion of the back-
ground region included in the initial foreground bounding
box as foreground. We hypothesize that this was the re-
sult of effectively allocating a specific mixture component
to the unique color of the table which was initially labelled
as foreground by inclusion in user drawn the bounding box.
Though this part of the table was very similar in color to the
parts of the table initially labelled as background, there al-
ways remained a dedicated mixture component in the fore-
ground model, which was not needed to describe the ba-
nana. To remedy this problem we experimented with a va-
riety of different automatic methods for choosing k. We
first ran k-means clustering the pixels in a down-sampled
version of the image for values of k& € [2,6]. Due to the
sensitivity of k-means to initialization conditions, we re-
peat this 3 times for each value of k£ and use the mean for
each value of k. We then use the average distance to cen-
troids for given value of k as an indicator of goodness of
fit, which we denote as fit(k). Our general aim is to find
the value of k£ which corresponds to a significant drop off in
fit(k). Our first attempt used the value of k below which
we observed largest change in average distance to centroid,
maxy,{ & fit(k)} + 1. Interestingly, this almost always

(a) bananal

(c) bananal fit(k) (d) tennis fit(k)

Figure 1. Plots of - fit(k), Z—;fit(k) and 7 for bananal and bool.
This led to the choice of K = 3 based on the threshold metric.

led to setting k = 2 even for images which clearly con-
tained several distinctly colored objects (see Figures 1(b)
and 1(d)). We then realized that we need not take the value
of k associated with maximum change in fit(k) but perhaps
any value of k£ below which there was a drop in fit larger
than some threshold. This cannot be directly implemented
however due to the fact that the color distributions of some
images are just inherently harder to model than others. This
means that the first = fit(k) might be difficult to compare
between images. Nonetheless, the plots of d% fit(k) in Fig-
ures 1(c) and 1(d) do seem to exhibit a useful difference in
shape, where the plot of % fit(k) in the tennis image be-
gins to drop in a meaningful way between £ = 3 and k = 2.
To capture this difference, we realized that we could use the
second derivative of fit(k) to pick out the point at which
the fit began to drop off, scaled to the rate of change with
respect to a given image. Thus, we finally used a hand set
a threshold 7 on the second derivative so that we chose the
largest value of k for which % fit(k) > 7. We found values
of 7 = 1.0E — 2 worked well for assigning a range of values
to k for images of varying color complexity. An example
plot of fit(k) for banana2 is shown in Figure 1. We also
experimented with color space and transformed the RGB
images into HSV (hue, saturation and value) space in the
hope that the color distributions for a given region cluster
more naturally if the saturation and intensity are explicitly
factored out. This might help deal with shadow lines which
presumably mostly affect saturation and intensity. Interest-
ingly we had to refit our goodness of fit threshold 7 because
the HSV image data had vastly different variance, despite
the fact that the parameters were all scaled to be within

the same range [0, 1]. Unfortunately, this had no strong ef-
fect, and only demonstrated that the algorithm could pro-
duce comparable results in a different color space. We have
omitted a demonstration of nearly identically segmentation
for the sake of space.

4.2. Smoothness Constraints

The second key component in the GrabCut model is the
presence of a smoothness constraint which enforces that
neighboring pixels tend to have similar o values, thus re-
stricting the total number of edge cuts. In the min cut frame-
work, this corresponds to placing a pairwise potential on ad-
jacent pixels which is 0 when they are assigned the same «
value and some positive value in the case they are assigned
different o values. While a constant edge weight would ac-
complish the general intuition, it can be refined by using
appearance information to pick out which pairs of adjacent
pixels are more likely to be separated by a true segmentation
boundary. By setting the pairwise penalty be the negative
Euclidean distance in RGB-space between two pixels, we
can enforce that the segmentations tend to fall along color
discontinuities; that is, the more distant the color values,
the smaller the pairwise potential, and the more appealing
an edge is to be part of the cut set. This model assumes that
all color differences of a given value provide equal evidence
for a segmentation boundary. This is problematic however,
for images which contain highly textured regions along with
relatively untextured regions. For example, the small-scale
discontinuities between sun and shade within a grass region
should not be treated the same as large color discontinuities
separating the sky from the horizon. To encode this intu-
ition, similar to [4], we normalize the edge penalties by a
region-specific measure of the amount of variation within a
p X p square surrounding the edge in question, 3(u, v). This
then makes pairwise penalties for edges in high constrast
regions larger (less negative) and the pairwise penalties for
edges in low contrast regions smaller (more negative). We
construct 3 by convolving each channel of the image against
8 different 3 x 3 filters with +1 in the center and -1 in each of
the other 8 positions. We then convolve the sum of squares
of these 8 convolutions with a p x p mask where each cell
has value 1/p?, to efficiently compute the amount of vari-
ation surrounding each pixel. Then, for a given edge we
normalize the pairwise penalty by the average of these val-
ues for each pixel in the pair. This yields an m x n map of
B values like the one shown in Figure 2 for which

8
1 , .
Coy = = o> (@ +iy+4)°

i,jeP r=1

where d,.(z,y) is the squared euclidean distance between
the color value at pixel (z,y) and one of the eight possible
immediate neighbor pixels indexed by r. The normalization

(a) bool

(b) B map

Figure 2. Example map of 3 values for the bool image. Note that
the [value is larger for the grass and tree regions in which there
is greater between-pixel contrast. The highest values occur for the
points whose surrounding region includes the boundaries of both
people and the background.

term for each edge is then computed by simply taking the
average of the C values for both pixels so that

1
Buv = 5(07:1/.7.”11, + Ommyw)

4.3. Implementation Details

The main file in our implementation is grabcut.m which,
given an image name, asks the user for a bounding box and
then computes the GrabCut algorithm [4]. In a slight depar-
ture from the terminology of [4], the variable tmap holds
the « values for each pixel. We also keep a map of the pixels
originally set to be background by the user in the variable
bbox_map. We iterate between updating the appearance
model and the segmentation until the change in the flow, or
cut value, between iterations is less than 1E2 or we have
reached a the maximum number of iterations (40). In order
to enforce the hard constraint that user labeled background
pixels be segmented correctly, we tried several approaches.
We first ran a max-flow/min-cut ! 2 algorithm on the entire
image and then only updated the « values for those pix-
els which were within the bounding box, keeping the re-
maining pixels set to background. This had several unde-
sirable effects, however. For one, it allowed edges to cross
the bounding box, which should not be allowed. Moreover,
it ignores the fact that any pixel on the edge of the bound-
ing box is necessarily going be adjacent to a background
pixel, and should be segmented accordingly. By letting
all of the pixels be segmented according to their model-
based unary and pairwise weights it allows pixels outside
of the bounding box to be segmented as foreground, which
can then propagate across the bounding box and encourage
pixels on the edge of the bounding box to be segmented

'We modified the Boykov min-cut/max-flow c++ implementation from
http://vision.csd.uwo.ca/code/

2We also used a matlab min-cut/max-flow mex file wrapper from
http://www.mathworks.com/matlabcentral/fileexchange/21310-maxflow

foreground. To remedy this, we simply set the appearance
model weights for the pixels outside of the bounding box
to be a large positive number for « = 1 and a large neg-
ative number for o = 0. This reliably enforces hard con-
straints on the segmentation because the smoothness con-
straints never outweigh these very large appearance model
weights. One downside of this approach is the significant
runtime cost associated with placing very high appearance
weights on some pixels. Though simple fix for this might be
to set the unary weights for pixels only on the edge bound-
ing box, we opted to keep the stick with the less efficient ap-
proach because it was more compatible with our user edit-
ing steps described in Section 4.4. The file evaluate.m
evaluates our model on the entire data set. We created a file
called names_GT which stores the image names and files
extension. The evaluation code then loads the image and
ground truth segmentation and runs grabcut . m for each
file, reporting the accuracy, precision and recall. To allow
for overnight runs without user interaction, we also created
a bounding box cache scheme where each bounding box
is saved to a directory called bbox_GT/ which if present,
is loaded by evaluate.m and passed into grabcut .m
which skips the user prompt to draw a bounding box.

4.4. User Editing

We chose to extend the basic GrabCut [4] algorithm with
the option to update the segmentation after the the iterative
re-estimation has converged. We allow the user to specify a
region of pixels which have been mislabeled by drawing an
arbitrary number of enclosed freeform shapes. Any pixels
within these shapes are then forced to have the label oppo-
site that of the current segmentation. This is done using the
same technique described for enforcing that pixels outside
the bounding box have @ = 0. The final segmentation is
thus computed with the original appearance models but with
the added constraint that certain pixels have fixed « values.
A successful example of user editing can be seen in Figure
3(c). This method has several limitations worth noting. For
one, it can really only update regions within the bounding
box, because even though it allows the user to change the o
values for the selected pixels which may reside in the initial
background, it cannot propagate this change to the neigh-
boring pixels which are have fixed « values of 0. One solu-
tion would be to remove the hard constraint on background
segmentation for all the pixels in the region surrounding the
user edit. However, this can be easily avoided by simply
making the bounding boxes large enough in the first place.
Another limitation of this approach is that it does not update
the appearance model according to the user edit, but simply
fixes the a values for some pixels by overwriting their unary
weights and leaves all other unary weights unchanged. This
means that in cases where one of the appearance models
has learned to describe pixels in the other region with high

Enclose Incorrect Regions and Press ENTER When Done

Enclose Incorrect Regions and Press ENTER When Done

50 100 150 200 250 300 350 50 100 150 200 250 300 350

(a) memorial user interaction (b) bush user interaction

Foreground Background

100 200 300 100 200 300
(c) memorial results

Foreground Background

100 200 300 100 200 300

(d) bush results

Figure 3. User brushing results and interface. 6 and 3(b) demon-
strate our user “brushing” interface which allows the user to update
both incorrectly segmented foreground and background pixels.

confidence, it will continue to mislabel any of the pixels
not explicit marked by the user as incorrect. Because the
pixels not marked by the user still have a low weight (high
probability) according for the wrong appearance model, the
forced ar assignment cannot always overcome strong unary
weights via the smoothness penalties. This can be seen in
Figure 3(d) in which, though we mark a large number of
pixels on the top of the planter as mistakenly assigned to
the background, these changes do not propagate to other

Foreground Background

50 100 160 200 250 300 350 400 450 500

(b) Llama

50 100 180 200 250 300 350 400 450 500

Figure 4. Example of segmentations using the automatic bounding
box with aspect ratio orientation

mislabeled pixels on the top of the planter. In the current
theory, this is because they still receive a high probability
from the background appearance model which recognizes
the strong similarity between the bright white path (which
is entirely in the background region) and the sunlit portion
of the planter.

4.5. Auto Bounding Box

A core feature of the GrabCut algorithm is the reduced
amount of user input required in comparison to contempo-
rary segmentation methods. We take this one step further
and attempt to eliminate the need for user input completely.
Our initial approach set a 10%-20% region of padding on
the inside of the image border to use as the bounding box.
While this idea came from viewing the our dataset, the task
of image segmentation in general applies to images in which
a foreground object is surrounded by background. An im-
age without background would not need to be segmented.
Thus the foreground object must be a subset of the image
and most likely a portion of the foreground will be inside
the central 80%-90% of the image. One consequence of
this technique is that since this bounding box is approxi-
mate we can no longer enforce the hard constraint that no
pixel outside of the bounding box is labeled as foreground
thus this initial segmentation is only used to initialize the
GMMs. Deciding that learning from our data would be a
better approach than human inference, we then estimated
the bounding box by taking the mean of the human selected
bounding boxes for the dataset. Inspecting the results for
the mean bounding box coordinates over all images (as can
be seen in Table 5), were surprised to see that the bounding

Mean Bounding Box Dimensions (%)
Dimension | x Min | y Min | x Max | y Max
Average 25.2 16.9 78.6 88.4
Wide 23.0 15.5 83.3 92.0
Tall 29.0 19.3 70.3 82.2

Figure 5. Mean bounding box coordinates in % of width and
height. Average uses all images. Wide is bounding box mean over
images that have a greater width than height and tall vice versa.

was inset so far into the image (as can be seen from Table
5, the mean lefthand x coordinate is 25.2% of the width in).
Drilling down into the data, we postulated that wide versus
tall images have different mean bounding box dimensions
and to explore this we calculated the mean with respect to
aspect ratio orientation. As can be seen (Wide and Tall rows
of Table 5), this is definitely true and inspecting the results
led us to the realization that vertical pictures tend to be taken
of objects that are tall and skinny and thus these objects are
likely to be closer to the center of the image and vice versa
for horizontal pictures. Using this aspect ratio model, we
estimated the bounding box a test image by calculating the
mean bounding box over all of the other images with the
same aspect ratio orientation. The auto bounding box seg-
mentation performed surprisingly well even given the tiny
training dataset (30 images in total). Bananal in Figure 4(a)
was segmented as successfully as with a human bounding
box, and with llama the new technique actually discovered
the piece of the llama llama’s back (Figure 4(b)) that was
mislabeled by both our human generated ground truth and
the Grabcut [4] paper.

5. Results

Overall we obtained good segmentation on most of the
images in the dataset. Upon inspection of the images that
our algorithm did not label perfectly, we discovered that in
many cases, we did not believe that the ground truth was
a correct segmentation. In images, bool and person5, for
example, only one of the two people in each image is chosen
for the foreground. The average statistics on the 20 test
images are given below and a complete table of our results
is given in Appendix A.

Results over 30 dataset images
Avg. Acc | Avg. Pr | Avg. Rec
0.954 0.867 0.926

6. Conclusion

The Grabcut algorithm presents a powerful method for
segmenting images that requiring minimal user input. Our
system uses the core features of the Grabcut algorithm and

Foreground

Background

Foreground

100 200 300 400 100 200 ‘ 3 .
(b) llama
Figure 6. Results With User Bounding Box

extends the functionality by reducing the amount of param-
eter tuning and eliminating user input. In order to achieve
this we have created algorithms that attempt to auto tune
parameters with respect to a given image and emulate user
behavior by examining user interactions on other images.
We have found that these extensions maintain the Grabcut
performance for many images and believe that with an in-
creased dataset size we can further enhance robustness of
our system.

7. Conclusion

The Grabcut algorithm presents a powerful method for
segmenting images that requiring minimal user input. Our
system uses the core features of the Grabcut algorithm and
extends the functionality by reducing the amount of param-
eter tuning and eliminating user input. In order to achieve
this we have created algorithms that attempt to auto tune
parameters with respect to a given image and emulate user
behavior by examining user interactions on other images.
We have found that these extensions maintain the Grabcut
performance for many images and believe that with an in-
creased dataset size we can further enhance robustness of
our system.

500

Appendix

A. Full Results
’ Image Name \ Acc \ Pr \ Rec ‘
bananal 0.98 0.95 0.98
banana2 0.99 0.97 0.98
banana3 0.99 0.99 0.97
book 0.96 | 091 0.99
bool 0.81 0.41 0.84
bush 0.95 0.92 | 0.80
ceramic 0.88 0.99 0.63
Cross 0.68 0.59 0.44
doll 0.99 | 099 | 099
elefant 0.96 0.89 0.98
flower 1.00 | 0.99 1.00
fullmoon 0.98 0.78 1.00
grave 096 | 0.78 | 0.96
llama 0.99 | 0.95 0.98
memorial 0.98 0.94 0.98
music 0.98 0.96 0.99
personl 0.99 1.00 | 0.97
person2 098 | 090 | 0.97
person3 0.99 | 096 | 0.99
person4 091 | 0.70 | 0.95
personS 094 | 0.54 1.00
person6 098 | 098 | 0.82
person? 099 | 098 | 0.89
person§ 099 | 098 | 095
scissors 0.87 0.47 0.87
sheep 1.00 1.00 | 0.95
stonel 0.98 0.93 0.99
stone2 1.00 1.00 0.99
teddy 0.99 | 0.95 1.00
tennis 0.94 0.60 0.94
Mean \ 0.954 \ 0.867 \ 0.926 \
References

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. Technical Re-
port UCB/EECS-2010-17, EECS Department, University of
California, Berkeley, Feb 2010.

[2] Y. Boykov and M. Jolly. Interactive graph cuts for optimal
boundary & region segmentation of objects in ND images.
In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth
IEEFE International Conference on, volume 1, pages 105-112.
IEEE, 2001.

[3] Y. Boykov and V. Kolmogorov. An experimental compari-
son of min-cut/max-flow algorithms for energy minimization

(4]

(3]

(6]

in vision. IEEE Trans. Pattern Anal. Mach. Intell., 26:1124—
1137, September 2004.

C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-
tive foreground extraction using iterated graph cuts. In ACM
Transactions on Graphics (TOG), volume 23, pages 309-314.
ACM, 2004.

B. C.Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zis-
serman. Using multiple segmentations to discover objects and
their extent in image collections. In Proceedings of CVPR,
June 2006.

J. Shi and J. Malik. Normalized cuts and image segmentation.
In Proceedings of the 1997 Conference on Computer Vision
and Pattern Recognition (CVPR *97), CVPR *97, pages 731-,
Washington, DC, USA, 1997. IEEE Computer Society.

